mmt_multipole_inversion.multipole_field.multipole_field_MCP#

Module Contents#

Functions#

Br_field_octupole(r, theta, phi, W1, W2, W3, W4, W5, W6, W7)

Compute the octupole field at a given position (r, theta, phi) in

Br_field_quadrupole_Cartesian(x, y, z, Q1, Q2, Q3, Q4, Q5)

Compute the quadrupole field at a given position (r, theta, phi) in

Br_field_quadrupole(r, theta, phi, Q1, Q2, Q3, Q4, Q5)

Compute the quadrupole field at a given position (r, theta, phi) in

Br_field_dipole(r, theta, phi, m1, m2, m3)

Compute the dipole field at a given position (r, theta, phi) in

mmt_multipole_inversion.multipole_field.multipole_field_MCP.Br_field_octupole(r, theta, phi, W1, W2, W3, W4, W5, W6, W7)#

Compute the octupole field at a given position (r, theta, phi) in spherical coordinates, and using 7 octupole moments:

W1 -> W_xxx
W2 -> W_xxy
W3 -> W_xxz
W4 -> W_xyz
W5 -> W_yyx
W6 -> W_yyy
W7 -> W_yyz

We are assuming Ms lies in these octupole moments, so Bx is:

Bx =  mu0    _5_
      ----   \    W_i * Px_i
      4 PI   /__
             i=1

where Px_i is the polynomial associated to the oct moment W_i, for the x-component of the B field. Similarly for the other components.

mmt_multipole_inversion.multipole_field.multipole_field_MCP.Br_field_quadrupole_Cartesian(x, y, z, Q1, Q2, Q3, Q4, Q5)#

Compute the quadrupole field at a given position (r, theta, phi) in spherical coordinates, and using 5 quadrupole moments:

Q1 -> Theta_xx
Q2 -> Theta_xy
Q3 -> Theta_xz
Q4 -> Theta_yy
Q5 -> Theta_yz

We are assuming Ms lies in these quadrupole moments, so Bx is:

Bx =  mu0    _5_
      ----   \    Q_i * Px_i
      4 PI   /__
             i=1

where Px_i is the polynomial associated to the quad moment Q_i, for the x-component of the B field. Similarly for the other components.

mmt_multipole_inversion.multipole_field.multipole_field_MCP.Br_field_quadrupole(r, theta, phi, Q1, Q2, Q3, Q4, Q5)#

Compute the quadrupole field at a given position (r, theta, phi) in spherical coordinates, and using 5 quadrupole moments:

Q1 -> Theta_xx
Q2 -> Theta_xy
Q3 -> Theta_xz
Q4 -> Theta_yy
Q5 -> Theta_yz

We are assuming Ms lies in these quadrupole moments, so Bx is:

Bx =  mu0    _5_
      ----   \    Q_i * Px_i
      4 PI   /__
             i=1

where Px_i is the polynomial associated to the quad moment Q_i, for the x-component of the B field. Similarly for the other components.

mmt_multipole_inversion.multipole_field.multipole_field_MCP.Br_field_dipole(r, theta, phi, m1, m2, m3)#

Compute the dipole field at a given position (r, theta, phi) in spherical coordinates, and using 3 dipolar moments.

We are assuming Ms lies in these dipole moments, so Bx is:

Bx =  mu0    _3_
      ----   \    m_i * Px_i
      4 PI   /__
             i=1

where Px_i is the polynomial associated to the dipole moment m_i, for the x-component of the B field. Similarly for the other components.